|
发布人:公共大数据国家重点实验室 发布时间:2024-04-07 浏览次数:5159 |
杨静 副教授硕士生导师 研究领域:多模态绿色人工智能(绿色数据中心、模型参数联合优选等)、多模态云边端融合网络(算力资源管理、算力调度)、多模态开放域模型融合推理(大小模型端云协同进化) 招生专业:电子信息、软件工程 招生方向:公共大数据融合与集成 通信地址:贵州省贵阳市贵州大学西校区崇厚楼912 电子邮件:jyang23@gzu.edu.cn  个人简介 美国OSU联合培养博士生(导师:樊国良教授),上海交通大学计算机科学与技术专业博士后(导师:过敏意教授,杰青,IEEE Fellow),贵州省高层次创新人才(千层次),贵州省高层次留学人才、中组部“西部之光”访问学者(合作导师:吴帆教授,杰青)。兼任CCF分布式计算与系统专家委员会执行委员、中国国土经济学会区域大数据专业委员会副秘书长、中国科协决策咨询团队青年研究员,贵州大学科研创新团队负责人,是国家自然科学基金委、贵州省科技厅、贵州省大数据局、贵阳市科技局、观山湖科技局等在库项目评审专家,长期从事数据科学多模态融合感知与边缘计算研究。主持国家自然科学基金项目1项,省部级项目6项,横向科研项目8项,作为主要完成人参与并发布国家标准2项,行业标准2项。获第十届贵州省高等教育本科生教学成果奖特等奖1次、贵州省高等教育研究生教学成果奖一等奖1次,贵州省研究生高等教育研究生教学成果奖三等奖1次;获教育部高等学校科学研究科技进步奖二等奖1次、贵州省科学技术进步二等奖2次、生产力促进(创新发展)一等奖1次、中国电子科技集团有限公司科学奖二等奖1次。主编《大数据技术原理与实践》、《大数据技术原理与实践》(第二版),以第一作者或通讯作者共发表SCI论文50余篇,获中国发明专利授权25件。担任一级学报“数据采集与处理”青年编委、贵州大学学报(自然科学版)首届青年编委,BigDIA 2022、IEEE ICCC 2022和2023、NCIT2022 技术委员会委员、Workshop论坛主席,参加WCICA和CVPR2019(CCF A类会议)等国际会议两次。服务于20多个国际期刊IEEE系列TC、TMC、TII、TIM、TSC、TSM、TAI、TASE、ITOJ等,被Information Fusion(IF14.8)、Computers and Electronics in Agriculture(IF7.7)等一区期刊评为优秀审稿人。指导团队研究生曾获得多次国家奖学金、优秀毕业生等荣誉,获得中国国际大学生创新大赛、国家数学建模、蓝桥杯等国家/省部级以上奖项20余次。
科研项目(近三年主持部分科研项目)[1]国家自然科学基金“动态场景下智能机器人视觉持续学习灾难性遗忘问题研究”,基金编号:62166005,主持; [2]贵州省科技支撑计划,面向新型国产化算力中心的算力交易技术研究,课题负责人; [3]贵州省科技支撑计划,带有卸载时延感知的边缘计算自适应流量调度技术研究,课题负责人; [4]科技成果转化及产业化计划(一般项目),云边端智能协同感知技术成果转化与应用,课题负责人; [5]贵州省科技支撑计划,面向东数西算场景的海量数据加速传输方法研究,课题负责人; [6]贵州省科技支撑计划,算力网络智能化感知度量技术研究,课题负责人; [7]贵阳市科技人才培养对象及培养项目,机器人视觉持续学习基础理论与应用研究,主持; [8]贵州白山云科技股份有限公司,边缘云技术研究项目,合同号:K21-0459-004.2021.09-2022.12,主持; [9]北京天云融创软件技术有限公司,贵州茅台云平台技术科研项目,合同号:K22-0459-002,主持; [10]贵州白山云科技股份有限公司,多业务混跑模式下大规模边缘服务器设备性能评估方法,合同号:K23-0459-006.2023.09-2024.12,主持; [11]国家“高等学校学科创新引智基地”(简称“111”基地)——公共大数据创新引智基地,2023.01-2027.12。
发表著作和国家标准[1]主编:李少波;杨静;大数据原理与实践,华中科技大学出版社, 380千字, 2020,ISBN:978-7-5680-6688-4 [2]主编:李少波;杨静;大数据原理与实践(第二版), 华中科技大学出版社, 420千字, 2023,ISBN:978-7-5680-8717-9 [3]国家标准:云制造服务平台开放接口要求,2022-04-22,标准号:20220067-T-604 [4]国家标准:智能制造服务通用要求,2024-02-27,标准号:GB/T 43554-2023 [5]行业标准:数据中心算力算效评估规范,2024-08-28,标准号:DB52/T 1846-2024
发表论文[1]Xingiing Ma.Jing Yang*,Jiacheng Lin,et al.LVAR-CZSL:Learning Visual Attributes Representation for Compositional ZeroShot Learning[J]. IEEE Transactions on Circuits and Systems for Video Technology,2024(通信作者,IF8.4.CCF B,SCI 1.Top) [2]Jing Yang*,JiaLin Lu,Xu Zhou,etal.HA-A2C:Hard Attention and Advantage Actor-Critic for Addressing Latency Optimization in Edge Computing[J],IEEE Transactions on Green Communications and Networking,2024.(第一作者,SCI2, IF:4.8) [3]Jialin Lu, Jing Yang*, Shaobo Li, et al. A2C-DRL:Dynamic Scheduling for Stochastic Edge-Cloud Environments Using A2Cand Deep Reinforcement Leamingy[J],IEEE Internet of Things Journal,2024, doi: 10.1109/10T.2024.3366252(通信作者,SCI 1 Top, IF:10.6) [4]Hongchao An,Jing Yang*,Xiuhua Zhang,et al.A Class-Incremental learning Approach for learning Feature-CompatibleEmbeddings[J],Neural Networks, 2024(通信作者,SCI 1,Top,IF:6.0,CCF B) [5]Qinglang Li, Jing Yang*,Xiaoli Ruan,et al, SPIRF-CTA: Selection of Parameter Importance Levels for Reasonable Forgetting in Continuous Task Adaptation[J], Knowledge-Based Systems,2024, Volume 305, 112575.(通信作者.F7.2.CCF B,SCI 1,TOP) [6]Xu Zhou,Jing Yang*,Yijun Li,Shaobo Li,Zhidong Su,Jialin Lu,EC-TRL: Evolutionary-Weighted Clustering and Transformer-Augmented Reinforcement Learning for Dynamic Resource Scheduling in Edge Cloud Environments[J],IEEE Internet of things Journal,2024 (通信作者,IF6.0,中科院一区Top) [7]Yuankai Wu,Jing Yang,Xiaoxu Chen, Yi Lin,et al.Long-Term Airport Network Performance Forecasting with Linear DiffusionGraph Networks[J],IEEE Transactions on Intelligent transportation systems,2024,doi:10.1109/ITS.2024.3420423(SCI1.TOP. IF7.9) [8]Jing Yang,Zukun Yu,et al.GG'T-SSN:Graph learning and Gaussian prior integrated spiking graph Neural network for eventdriven tactile object recognition[J],Information Sciences,2024(第一作者,SCI 1,Top,IF 8.1) [9]Jing Yang, Sun jie, Shaobo Li,et al. GACP: Graph neural networks with ARMA filters and a parallel CNN for hyperspectral classification image[J], International Journal of Digital Earth,2023.16(1):1770-1800. https://doi.org/10.1080/17538947.2023.2210310.(第一作者,SCI 1, Top, IF:5.1) [10]Jing Yang,Xingiiang MaJiacheng Lin,TGN-cZSL:Image and Text Guided Network for Compositional Zero-shot Learning[J],51st intermational Symposium on Computer Architecture AOMC Workshop,2024(第一作者,CCF A) [11]Yao He,Jing Yang*,Shaobo Li,Jianjun Hu,Raping Ren,Qing Ji.CL-BPUWM:Continuous learing with Bayesian parameter updating and weight memory[J],Complex & Intelligent Systems,2024.(Q1、中科院二区、IF5.8、通信) [12]Zukun Yu,Jing Yang*,Qin Ran,Shaobo Li,and Zhidong Su,G2T-SNN: Fusing Topological Graph and Gaussian Prior Spiking Neural Networks for Tactle Object Recognition[J],lEEE Sensors Joumal, 2024,doi:10.1109/SEN.2024.3397884.(通信作者,SCI2,IF:4.3) [13] Shujie Ding,Xiaoli Ruan*,Jing Yang*,Jie Sun,et al.LSSMA: Lightweight Spectral-Spatial Neural Architecture with Multi-Attention Feature Extraction for Hyperspectral Image Classification[J],IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024.(Q1,中科院二区,IF5.5,通信) [14lJie Sun,Jing Yang*,Wang Chen,Sujie Ding,Shaobo Li,Jianjun Hu,LCTCS:Low-cost and two-channel sparse networkforhyperspectral image classification[J],Neural Processing Letters,2024(通信作者,SCI 4.IF 3.1, CCF C) [15]Jing Yang*,Zukun Yu,Xiaoyang Ji,Zhidong Su,Shaobo Li,Yang Cao,Spiking Neural Network Tactile Classification Method with Faster and More Accurate Membrane Potential Representation[J],IET Collaborative Intelligent Manufacturing,2024(第一作者,IF2.5) [16]Xu Zhou,Jing Yang*,et al.Deep Reinforcement learning-based resource scheduling for energy optimization and loadbalanceing in SDN-Driven edge computing[J].ComputerCommunications.2024(通信作者,SCI3.JF 4.5.CCF C) [17]Jing Yang,Kun Yuan,Suhao Chen,Qingliang Li,et al.A New Multinetwork Mean Distillation Loss Function for Open-world Domain Incremental Object Detection[J],International Journal of Intelligent Systems,2023,vol2023,https://doi.org/10.1155/1970/3044155.(Q1、中科院二区、IF7.0) [18]Jing Yang,Tingqing Liu*,Yaping Ren,Qing Hou*,Shaobo Li,Jianjun Hu.AM-SGCN: Tactile Object Recognition for Adaptive Multichannel Spiking Graph Convolutional Neural Networks[J],IEEE Sensors Journal,2023,23(24):30805-30820.(Q1、中科院二区、IF4.3) [19]Yang Jing, Li Shaobo*, Wang Zheng, Dong Hao, Wang Jun,et al. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges[J]. Materials 2020, 13, 5755-5778.(Q1、中科院三区、入选高被引和热点论文) [20]Yang Jing, JI Xiaoyang, LI Shaobo, WANG Yang, LIU Tingqing. Spiking Neural Network Robot Tactile Object Recognition Method with Regularization Constraints[J]. Journal of Electronics & Information Technology. 2023,doi: 10.11999/JEIT220711(CCF C类中文期刊,一级学报) [21]Yang Jing, HE Yao, LI Bin, LI Shaobo, HU Jianjun, PU Jiang. A Continual Semantic Segmentation Method Based on Gating Mechanism and Replay Strategy[J]. Journal of Electronics & Information Technology. 2024,doi: 10.11999/JEIT230803(CCF C类中文期刊,一级学报) [22]Yang Jing, LI Bin, LI Shaobo, WANG Qi, YU Liya, HU Jianjun, YUAN Kun. Brain-inspired Continuous Learning: Technology, Application and Future[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1865-1878. doi: 10.11999/JEIT210932(CCF C类中文期刊,一级学报) [23]Yang Jing,Sun Jie,Ding Sujie,Li Shaobo,et al.Hyperspectral Image Classification Based on Multi-Intentional Force Mechanism and Compiled Graph Neural Networks.[J].Transactions of the Chinese Society for Agricultural Machinery,2024.(EI源刊,一级学报) [24]ZHOU Xu, MIAO Hui, YANG Jing*, JIANG Wu,et al. Edge computing resource scheduling overview: Historical perspective,architecture,modeling,and method analysis[J]. Computer Integrated Manufacturing System, 2024,DOI: 10.13196/j.cims.2023.0132.2.(EI源刊,一级学报,校企,通信) [25]Yao He; Jing Yang*, et al.Generative Replay Method Based on Integrating Random Gating and Attention Mechanism. in 2023 IEEE 9th International Conference on Computer and Communications (IEEE ICCC). 2023.(EI收录,通信) [26]Jing Yang,Xiaoyang Ji,Shaobo Li,et al. Robot Tactile Data Classification Using Spiking Neural Network,China Automation Congress(CAC2021),2021, 266-285 (EI收录) [27]Jing Yang,Yifan Wang, Zheng Wang,et al, Using stochastic gradient descent and deep learning to defect detection for medicinal hollow capsule, China Automation Congress(CAC2021),2021, 201-207 (EI收录) [28]Jing Yang,Guanci Yang*,Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer,Algorithms, 2018,11(3),28;doi:10.3390/a11030028(EI源刊,一级学报) [29]Jing Yang, Weihua Sheng, Guanci Yang,Dynamic Gesture Recognition Algorithm based on ROI and CNN for Social Robots,2018 13th World Congress on Intelligent Control and Automation (WCICA) 2018.06,389-394(EI收录) [30]Li Shao-Bo, Yang Jing*, Wang Zheng, et al. Review of development and application of defect detection technology. Acta Automatica Sinica, 2020,46(11): 2319−2336. (CCF A类中文期刊,卓越期刊,一级学报) [31]YANG Guan-Ci, YANG Jing*, SU Zhi-Dong, et al. An Improved YOLO Feature Extraction Algorithm and Its Application to Privacy Situation Detection of Social Robots. ACTA AUTOMATICA SINICA, 2018, 44(12): 2238-2249(CCF A类中文期刊,卓越期刊,一级学报,通信) [32]Yang Guanci,Yang Jing*,Li Shaobo,Hu Jianjun,Modified CNN algorithm based on Dropout and ADAM optimizer, Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,46(7),122-128(EI源刊,卓越期刊)
部分合作论文[1]赵涵,邓俊骁,崔炜,陈全,曾德泽,杨静,过敏意.保证延时敏感型任务服务质量的情况下利用流处理器内所有并行性以最大化系统吞吐[J],中国科学:信息科学,2024(合作作者,CCF A类中文期刊) [2]Pengyu Yang,Weihao Cui, Jing Yang,Minyi Guo,et al.Taming Flexible Job Packing in Deep Learning Training Clusters[J],ACM Transactions on Architecture and Code Optimization,2024(合作作者,CCF A类,中科院三区) [3]Ding Sujie, Ruan Xiaoli, Yang Jing, et al. LRDTN: Spectral-Spatial Convolutional Fusion Long-Range Dependency Transformer Network for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024.DOI: 10.1109/TGRS.2024.3510625(合作作者,中科院一区Top,IF7.5) [4]Chenhui Zhang,Jinguo Cheng,Jing Yang,Huachun Tan,Yuankai Wu,Intergrating Future Exogenous informationinto Multi-mode Travel Demand Forecasting at Gateway HubslCl.The 3lst Interational Conference on NeuraInformation(ICONIP),2024(合作作者,CCF C类国际会议)
部分发明专利[1]杨静,鲁加林,周绪,等.基于硬注意力和A2C的跨区域算力调度时延优化方法[P].贵州省:CN202311858091.8,2024-04-30. [2]杨静,鲁加林,等.一种复杂环境下动态负载均衡的LSTM边缘计算流量预测方法[P]:贵州省,CN115361318A.2022-11-18. [3]杨静,鲁加林,霍涛,等.边缘环境下动态负载均衡的深度强话化学习资源调度方法[P]:贵州省,CN116048801A.2023-05-02. [4]杨静,周绪,等.一种基于强化学习优化边缘能耗与负载的资源调度方法[P]:贵州省,CN117194057A.2023-12-08. [5]杨静,刘科利,等. 基于亲密度感知与负载均衡的微服务部署方法[P]:贵州省,CN117950857A.2024-12-30. [6]杨静,熊川越,等.面向边缘计算的分发任务自适应负载预测方法、系统及介质[P]:贵州省,CN119110350A.2024-12-10 [7]杨静,胡缘缘,等. 一种基于联合多目标优化模型的数据中心能耗优化方法[P] :贵州省,CN119110350A.2024-12-30 [8]杨静,赵洋,等. 一种考虑时空信息的超密集组网CDS热点主动式预测方法[P] :贵州省 [9]李逸骏,熊川越,杨静,凌一宏,谢群,林光政,胡丙齐,邹双林,龚仁杰.一种基于复杂周期的边缘云长序列负载预测方法、装置、设备及介质[P].贵州省:CN118331746B,2024-08-20. [10]李逸骏,邹双林,杨静,凌一宏,林光政,谢群,胡丙齐,熊川越,龚仁杰.一种服务器设备性能预测方法、装置、设备及介质[P].贵州省:CN118170627B,2024-07-16. [11]杨静,麻兴江,阮小利,李小勇,唐向红,张磊,陆见光.一种用于组合零次学习的视觉属性表征学习方法[P].贵州省:CN118196428B,2024-07-19. [12]杨静,孙杰,等.基于角度信息解耦的旋转检测框表达方式的系统[P].贵州省:CN114964120B,2024-05-31. [13]杨静,何瑶,刘庭卿,等.基于贝叶斯参数更新及权重记忆的正则化持续学习方法[P].贵州省:CN202310156840.6,2023-06-02. [14]杨静,李庆浪,等.一种基于因果学习与动态参数选择的类增量学习方法:贵州省,CN119047585A[P].2024-11-29. [15]杨静,袁坤,等.一种基于多网络均值蒸馏损失函数的增量目标检测方法:贵州省CN116310480A[P].2023-06-23 [16]杨静,李斌,等.一种具有稀疏化效应的持续学习语义分割方法:贵州省,CN115482383A[P].2022-12-16 [17]杨静,李少波,吉晓阳,等.一种不完备数据集中平衡输入数据类别多目标检测方法[P].贵州省:CN112633319B,2022-11-22. [18]杨静,李小勇,阮小利,等.融合跨模态注意力和关注模态内信息的视听零次学习方法[P].贵州省:CN202410089496.8,2024-04-30. [19]杨静,安红超,李庆浪,等.一种结构扩展与蒸馏的新旧类特征兼容学习方法[P].贵州省:CN202311865868.3,2024-04-26. [20]杨静,李庆浪,安红超,等.一种开放域环境下合理遗忘视觉任务知识的持续学习方法[P].贵州省:CN202311858090.3,2024-04-12. [21]杨静,麻兴江,阮小利,等.一种开放域属性和对象引导的零次学习视觉模型推理方法[P].贵州省:CN202311120969.8,2023-11-28. [22]杨静,袁坤,张秀华,等.一种基于多网络均值蒸馏损失函数的增量目标检测方法[P].贵州省:CN202211522771.8,2023-06-23. [23]杨静,张伍聪,付皓甯,等.一种基于Siamese对比嵌入网络的学习标注优化方法[P].贵州省:CN202410528981.0,2024-07-12. [24]杨静,孙杰,丁书杰,等.一种基于GCN与CNN新型网络的小样本HSI分类方法[P].贵州省:CN202310009623.4,2023-06-02. [25]杨静,岑顺禹,韦广枢,等.通过触觉感知识别物品类别的工作系统和方法[P].贵州省:CN116028841B,2023-08-15. [26]杨静,吉晓阳,等.基于脉冲神经网络的机械手触觉数据分类方法[P].贵州省:CN114065806B,2022-12-20. [27]杨静,袁坤,等.一种面向环形光源的多视角胶囊缺陷检测装置[P].贵州省:CN114062262B,2023-08-11. [28]杨静,孙杰,等.一种基于双通道稀疏化网络的高光谱图像分类方法[P].贵州省:CN115471677B,2023-09-29. [29]杨静,王铮,等.一种胶囊视觉缺陷检测过程中的自动排序机构[P].贵州省:CN112387619B,2024-06-11. [30]杨静,等.一种基于视觉检测技术的胶囊传送装置[P].贵州省:CN112110129B,2024-12-13. [31]杨静,等.一种基于机器视觉的集成式胶囊缺陷检测装置[P].贵州省:CN112317340B,2024-07-26. [32]杨观赐,杨静,盛卫华,等.基于卷积神经网络目标实时检测模型的特征提取方法[P].贵州省:CN107330437B,2021-01-08. [33]杨观赐,杨静,苏志东,等.手写字符计算机识别方法[P].贵州省:CN107330480B,2020-10-13.
|
|
|